TOIN UNIVERSITY OF YOKOHAMA

MIYASAKA Group

Original papers

 

“Perovskite solar cells based on polymerized chlorophyll films as environmentally friendly hole-transporting layers”,
Z. Liu, C. Zhang, L. Yang, T. Xiang, N. Li, A. Li, Y. Sun, H. Ren, S. Sasaki, T. Miyasaka, and X.-F. Wang, Small, 2023, 2305484, https://onlinelibrary.wiley.com/doi/10.1002/smll.202305484

"A low-symmetry monothiatruxene-based hole transport material for planar n-i-p perovskite solar cells with 18.9% efficiency",
E. Tanaka, G. M. Kim, M. R. Maciejczyk, A. Ishii, G. S. Nichol, T. Miyasaka, and Neil Robertson, J. Mater. Chem. C, 2023, 11, 8214-8222.

"Degradation mechanism of phenethylamine-based interlayers in perovskite solar cells and breakthrough",
S. Lee, G. M. Kim, T. Miyasaka, and S. Y. Oh,Solar RRL, 2023, 2201002.

“A semitransparent silver-bismuth iodide solar cell with Voc above 0.8 V for indoor photovoltaics”,
N. B. C. Guerrero, Z. Guo, N. Shibayama, A. K. Jena, and T. Miyasaka, ACS Appl. Energy Mater. 2023, 2023, (doi/10.1021/acsaem.3c00223)

“Halide Perovskite for Indoor Photovoltaics: The Next Possibility”,
Z. Guo, A. K. Jena, and T. Miyasaka, ACS Energy Lett. 2023, 8, 90-95. (doi.org/10.1021/acsenergylett.2c02268)

"Up-converting near-infrared light detection in lead halide perovskite with core-shell lanthanide nanoparticles",
A. Ishii and T. Miyasaka, Advanced Photonics Research, 2023, 4, 2200222.(doi.org/10.1002/adpr.202200222)

“A universal method of perovskite surface passivation for CsPbX3 solar cells with Voc over 90% of the S‐Q limit”,
Z. Guo, S. Zhao, N. Shibayama, A. K. Jena, I. Takei, and T. Miyasaka, Adv. Funct. Mater. 2022, 32, 2207554.(doi/abs/10.1002/adfm.202207554)

“Degradation mechanism of halide perovskite crystals under concurrent light and humidity exposure”,
Y. Nakamura, N. Shibayama, K. Fujiwara, T. Koganezawa, and T. Miyasaka, ACS Materials Lett. 2022, 4, 2409-2414. (doi.org/10.1021/acsmaterialslett.2c00744)

“The high open-circuit voltage of perovskite solar cells: a review“,
Z. Guo, A. K. Jena, G. M. Kim, and T. Miyasaka, Energy Environ. Sci., 2022,15, 3171-3222. (DOI: doi.org/10.1039/D2EE00663D)

"Out-of-glovebox integration of recyclable europium-doped CsPbI3 in triple-mesoscopic carbon-based solar cells exceeding 9% efficiency",
S. Valastro, E. Smecca, C. Bongiorno, C. Spampinato, G. Mannino, S. Biagi, I. Deretzis, F. Giannazzo, A. K. Jena, T. Miyasaka, A. La Magna, and A. Alberti,Sol. RRL, 2022, 2200267. (DOI:10.1002/solr.202200267)

"Bacteriochlorin aggregates as dopant-free hole-transporting materials for perovskite solar cells",
N. Li, B. Wang, S. Sasaki, T. Miyasaka, G. Chen, X. -F. Wang, Organic Electronics, 2022, 108, 106596. (DOI:10.1016/j.orgel.2022.106596)

"Black-yellow bandgap trade-off during thermal stability tests in low-temperature Eu-doped CsPbI3",
S. Valastro, G. Mannino, E. Smecca, C. Bongiorno, S. Sanzaro, I. Deretzis, A. L. Magna, A. K. Jena, T. Miyasaka, and A. Alberti, Sol. RRL, 2022, 2200008. (DOI:10.1002/solr.202200008)

”FAPbBr3 perovskite solar cells with VOC over 1.5 V by controlled crystal growth using a tetramethylenesulfoxide”,
Y. Numata, N. Shibayama, and T. Miyasaka, J. Mater. Chem. A, 2021. (DOI:10.1039/D1TA08964A)

"Phenethylamine-based interfacial dipole engineering for high Voc triple-cation perovskite solar cells",
G. M. Kim, H. Sato, Y. Ohkura, A. Ishii, and T. Miyasaka, Adv. Energy Mat., 2021. (DOI:org/10.1002/aenm.202102856)

”Dopant-free polymer HTM-based CsPbI2Br solar cells with efficiency over 17% in sunlight and 34% in indoor light”,
Z. Guo, A. K. Jena, I. Takei, M. Ikegami, A. Ishii, Y. Numata, N. Shibayama, and T. Miyasaka, Adv. Functional Mat., 2021, 31, 2103614. (DOI:org/10.1002/adfm.202103614)

”Evaluation of Damage Coefficient for Minority-Carrier Diffusion Length of Triple-Cation Perovskite Solar Cells under 1 MeV Electron Irradiation for Space Applications”,
Y. Miyazawa, G. M. Kim, A. Ishii, M. Ikegami, T. Miyasaka, Y. Suzuki, T. Yamamoto, T. Ohshima, S. Kanaya, H. Toyota, and K. Hirose, J. Phys. Chem. C, 2021, 125, 13131-13137. (DOI:10.1021/acs.jpcc.1c01590)

"Ionic liquid-assisted MAPbI3 nanoparticle-seeded growth for efficient and stable perovskite solar cells",
Md. Shahiduzzaman, L.-L. Wang, S. Fukaya, E. Y. Muslih, A. Kogo, M. Nakano, M. Karakawa, K. Takahashi, K. Tomita, J.-M. Nunzi, T. Miyasaka, and T. Taima, ACS Appl. Mater. Interfaces, 2021, 13, 21194-21206. (DOI:10.1021/acsami.1c00677)

“Single- or double-A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?”
F. Uenlue, A. Kulkarni, K. Le, C. Bohr, A. Bliesener, S. D. Oez, A. K. Jena, Y. Ando, T. Miyasaka, T. Kirchartz, S. Mathur, J. Mater. Res. 2021, 1-11. (DOI:10.1557/s43578-021-00155-z)

 

"Drastic change of surface morphology of cesium-formamidinium perovskite solar cells by antisolvent processing",
Y. Numata, Y. Sanehira, and T. Miyasaka, ACS Appl. Energy Mater., 2021, 4, 1069-1077. (DOI:10.1021/acsaem.0c01717)

"Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells",
B. Wang, N. Li, L. Yang, C. Dall’Agnese, A. K. Jena, S. Sasaki, T. Miyasaka, H. Tamiaki, and X. -F. Wang, J. Am. Chem. Soc., 2021, 143, 2207-2211. (DOI:10.1021/jacs.0c12786)

"Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air"
L. Yang, D. Kan, C. Dall'Agnese, Y. Dall'Agnese, B. Wang, A. K. Jena, Y. Wei, G. Chen, X. -F. Wang, Y. Gogotsi, and T. Miyasaka, J. Mater. Chem. A, 2021, 9, 5016-5025. (DOI:10.1039/D0TA11397B)

"Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency",
L. Yang, Q. Xiong, Y. Li, P. Gao, B. Xu, H. Lin, X. Li and T. Miyasaka, J. Mater. Chem. A, 2021. 9, 1574-1582. (DOI:10.1039/D0TA10717D)

"Residual PbI2 beneficial in the bulk or at the interface? An investigation study in sputtered NiOx hole-transport-layer-based perovskite solar cells",
N. Pant, A. Kulkarni, M. Yanagida, Y. Shirai, T. Miyasaka, and K. Miyano, ACS Appl. Energy Mat., 2020, 3, 6215-6221. (DOI:10.1021/acsaem.0c00245)

"Improved electrical and structural stability in HTL-free perovskite solar cells by vacuum curing treatment",
S. Valastro, E. Smecca, S. Sanzaro, F. Giannazzo, I. Deretzis, A. L. Magna, Y. Numata, A. K. Jena, T. Miyasaka, A. Gagliano, and A. Alberti, Energies, 2020, 13, 3953. (DOI:10.3390/en13153953)

”Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites",
F. Unlu, E. Jung, J. Haddad, A. Kulkarni, S. Oz, H. Choi, T. Fischer, S. Chakraborty, T. Kirchartz, and S. Mathur, APL Materials, 2020, 8, 070901. (DOI:10.1063/5.0011851)

”Cesium acetate-induced interfacial compositional change and graded band level in MAPbI3 perovskite solar cells”,
A. K. Jena, A. Ishii, Z. Guo, M. A. Kamarudin, S. Hayase, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2020, 12, 30, 33631-33637. (DOI:10.1021/acsami.0c06315)

”Photoactive Zn-chlorophyll hole transporter-sensitized lead-free Cs2AgBiBr6 perovskite solar cells",
B. Wang, L. Yang, C. Dall’Agnese, A. K. Jena, S. Sasaki, T. Miyasaka, H. Tamiaki, and X. -F. Wang, Solar RRL, 2020, 2000166. (DOI: 10.1002/solr.202000166)

"Full efficiency recovery in hole-transporting layer-free perovskite solar cells with free-standing dry-carbon top-contacts",
S. Valastro, E. Smecca, S. Sanzaro, I. Deretzis, A. L. Magna, Y. Numata, A. K. Jena, T. Miyasaka, A. Gagliano, and A. Alberti, Frontiers in Chemistry, 2020, 8, 200(1-8). (DOI:10.3389/fchem.2020.00200)

"Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near‐infrared light‐emitting diodes",
A. Ishii and T. Miyasaka, Advanced Science, 2020, 7, 1903142. (DOI:10.1002/advs.201903142)

"VOC over 1.4 V for amorphous tin-oxide-based dopant-free CsPbI2Br perovskite solar cells",
Z. Guo, A. K. Jena, I. Takei, G. M. Kim, M. A. Kamarudin, Y. Sanehira, A. Ishii, Y. Numata, S. Hayase, and T. Miyasaka, J. Am. Chem. Soc., 2020, 142, 9725-9734. (DOI:10.1021/jacs.0c02227)

”Electron irradiation induced aging effects on radiative recombination properties of quadruple cation organic-inorganic perovskite layers",
P. Aversa, S. Oez, E. Jung, O. Plantevin, O. Cavani, N. Ollier, J. -Eric Bouree, B. Geffroy, T. Miyasaka, S. Mathur, and C. Corbe, Emergent Materials, 2020, 3, 133-160. (DOI:10.1007/s42247-020-00096-z)

”Synthesis, optoelectronic properties and applications of halide perovskites",
L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, and V. Biju, Chem. Soc. Rev, 2020, 49, 2869-2885. (DOI: 10.1039/c9cs00848a)

"Lead(II) propionate additive and a dopant-free polymer hole transport material for CsPbI2Br perovskite solar cells",
S. Oez, A. K. Jena, A. Kulkarni, K. Mouri, T. Yokoyama, I. Takei, F. Uenlue, S. Mathur, and T. Miyasaka, ACS Energy Lett., 2020, 5, 1292-1299. (DOI:10.1021/acsenergylett.0c00244)

"Low-temperature synthesized Nb-doped TiO2 electron transport layer enabling high-efficiency perovskite solar cells by band alignment tuning",
Y. Sanehira, N. Shibayama, Y. Numata, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2020, 12, 15175-15182. (DOI:10.1021/acsami.9b23485)

"Femto- to microsecond dynamics of excited electrons in a quadruple cation perovskite",
E. Jung, K. Budzinauskas, S. Oez, F. Uenlue, H. Kuhn, J. Wagner, D. Grabowski, B. Klingebiel, M. Cherasse, J. Dong, P. Aversa, P. Vivo, T. Kirchartz, T. Miyasaka, P. H. M. van Loosdrecht, L. Perfetti, and S. Mathur, ACS Energy Letters, 2020, 5, 785-792. (DOI:10.1021/acsenergylett.9b02684)

"A single-phase brookite TiO2 nanoparticle bridge enhances the stability of perovskite solar cells",
Md. Shahiduzzaman, A. Kulkarni, S. Visal, L. Wang, M. Nakano, M. Karakawa, K. Takahashi, S. Umezu, A. Masuda, S. Iwamori, M. Isomura, T. Miyasaka, K. Tomita and T. Taima, Sustainable Energy Fuels, 2020. 4 2009-2017. (DOI: 10.1039/C9SE01133A.)

“MACl‐assisted ge doping of Pb‐Hybrid perovskite: A universal route to stabilize high perovskite solar cells”,
G. M. Kim, A. Ishii, and T. Miyasaka, Adv. Energy Mat., 2020, 1903299. (DOI:10.1002/aenm.201903299)

“Benzodithiophene-thienopyrroledione-thienothiophene-based random copolymeric hole transporting material for perovskite solar cell”,
V. S. Murugesan, R. R. Michael, A. K. Jena, J. -W. Kang, N. H. Kim, H. Segawa, T. Miyasaka and J. H. Lee, Chem. Engineering J., 2020, 382, 122830. (DOI:10.1016/j.cej.2019.122830)

“Tetrahydrofuran as an oxygen donor additive to enhance stability and reproducibility of perovskite solar cells fabricated in high relative humidity (50%) atmosphere”,
B. Chaudhary, A. Kulkarni, A. K. Jena, M. Ikegami, and T. Miyasaka, Energy Technology, 2020, 8, 1900990.(DOI:10.1002/ente.201900990)

”Investigating the growth of CH3NH3PbI3 thin films on RF-Sputtered NiOx for inverted planar perovskite solar cells: effect of CH3NH3+ halide additives versus CH3NH3+ halide vapor annealing",
N. Pant, A. Kulkarni, M. Yanagida, Y. Shirai, T. Miyasaka, and K. Miyano, Adv. Mater. Interfaces, 2019, 1901748, 1-10. (DOI: 10.1002/admi.201901748)

”Proton irradiation tolerance of high-efficiency perovskite absorbers for space applications",
S. Kanaya, G. M. Kim, M. Ikegami, T. Miyasaka, K. Suzuki, Y. Miyazawa, H. Toyota, K. Osonoe, T. Yamamoto and K. Hirose, J. Phys. Chem. Lett., 2019, 10, 6990-6995. (DOI:10.1021/acs.jpclett.9b02665)

”Photomultiplying visible light detection by halide perovskite nanoparticles hybridized with an organo eu complex”,
A. Ishii, A. K. Jena, and T. Miyasaka, J. Phys. Chem. Lett., 2019, 10, 5935-5942. ( DOI:10.1021/acs.jpclett.9b02432)

“Bilayer chlorophyll derivatives as efficient hole-transporting layers for perovskite solar cells”,
N. Li, C. Dall’Agnese, W. Zhao, S. Duan, G. Chen, S. Sasaki, H. Tamiaki, Y. Sanehira, T. Miyasaka and X. -F. Wang, Mater. Chem. Front., 2019, 3, 2357-2362. (DOI:10.1039/c9qm00377k)

“Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells”,
L. Yang, C. Dall’Agnese, Y. Dall’Agnese, G. Chen, Y. Gao, Y. Sanehira, A. K. Jena, X. -Feng Wang, Y. Gogotsi, and T. Miyasaka, Adv. Funct. Mater., 2019, 1905694,1-8. (DOI: 10.1002/adfm.201905694)

“Perovskite Solar Cells: Can We Go Organic‐Free, Lead‐Free, and Dopant‐Free?”,
T. Miyasaka, A. Kulkarni, G. M. Kim , S. Oez, and A. K. Jena, Adv. Energy Mater., 2019, 1902500. (DOI:10.1002/aenm.201902500)

”Performance enhancement of AgBi2I7 solar cells by modulating a solvent-mediated adduct and tuning remnant BiI3 in one-step crystallization",
A. Kulkarni, A. K. Jena, M. Ikegami, and T. Miyasaka, Chem. Comm., 2019, 55, 4031-4034.(DOI:10.1039/C9CC00733D)

"SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells",
L. Yang, Y. Dall'Agnese, K. Hantanasirisakul, C. E. Shuck, K. Maleski, M. Alhabeb, G. Chen, Y. Gao, Y. Sanehira, A. K. Jena, L. Shen, C. Dall'Agnese, X. -F. Wang, Y. Gogotsi and T. Miyasaka, J. Mater. Chem. A, 2019, 7, 5635-5642. (DOI: 10.1039/c8ta12140k)

”Thermo-evaporated pentacene and perylene as hole transport materials for perovskite solar cells",
X. Zhang, M. Li, C. Dall’Agnese, G. Chen, X.-F. Wang, and T. Miyasaka, Dyes and Pigments, 2019, 160, 285-291. (DOI:10.1016/j.dyepig.2018.07.053)

”Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 Halide Perovskite”,
O. A. Lozhkina, A. A. Murashkina, V. V. Shilovskikh, Y. V. Kapitonov, V. K. Ryabchuk, A. V. Emeline, and T. Miyasaka, J. Phys. Chem. Lett., 2018, 9, 5408-5411. (DOI:10.1021/acs.jpclett.8b02178)

”Ambient Fabrication of 126 μm Thick Complete Perovskite Photovoltaic Device for High Flexibility and Performance”,
T. Singh, M. Ikegami, and T. Miyasaka, ACS Appl. Energy Mater., 2018, 1, 6741-6747. (DOI: 10.1021/acsaem.8b01623)

”Structural and Optical Behaviour of MAPbI3 Layers in Nitrogen and Humid Air”,
A. Alberti, G. Mannino, I. Dreretzis, E. Smecca, S. Sanzaro, A. La Magna, Y. Numata, and T. Miyasaka, 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), 2018, 1-5. (DOI: 10.1109/RTSI.2018.8548430)

”Thiocyanate Containing Two-Dimensional Cesium Lead Iodide Perovskite, Cs2PbI2(SCN)2: Characterization, Photovoltaic Application, and Degradation Mechanism”,
Y. Numata, Y. Sanehira, R. Ishikawa, H. Shirai, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2018, 10, 42363-42371. (DOI: 10.1021/acsami.8b15578)

"Stabilization of α-CsPbI3 in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI3",
A. -K. Jena, A. Kulkarni, Y. Sanehira, M. Ikegami, and T. Miyasaka, Chem. Mater., 2018, 30, 6668-6674. (DOI: 10.1021/acs.chemmater.8b01808)

“Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication”,
Y. Numata, R. Ishikawa, Y. Sanehira, A. Kogo, H. Shiraib, and T. Miyasaka, J. Mater. Chem. A, 2018, 6, 9583-9591. (DOI: 10.1039/C8TA02540A)

"ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells",
E. Zheng, Y. Wang, J. Song, X. -F. Wang, W. Tian, G. Chen, and T. Miyasaka, Journal of Energy Chemistry, 2018, 27, 1461-1467. (DOI:10.1016/j.jechem.2017.09.026)

“Lead halide perovskites in thin film photovoltaics: backgrounds and perspectives”,
T. Miyasaka, Bull. Chem. Soc. Jpn., 2018, 91, 1058-1068. (DOI:10.1246/bcsj.20180071)

“Spontaneous synthesis of highly crystalline TiO2 compact/mesoporous stacked films by a low-temperature steam-annealing method for efficient perovskite solar cells”,
Y. Sanehira, Y. Numata, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2018, 10, 17195-17202. (DOI: 10.1021/acsami.8b03532).

"Tolerance of perovskite solar cell to high-energy particle irradiations in space environment",
Y. Miyazawa, M. Ikegami, H. -W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience,2018, 2, 148-155. (DOI: doi.org/10.1016/j.isci.2018.03.020).

”Stability and degradation in hybrid perovskites: Is the glass half empty or half-full?",
I. Deretzis, E. Smecca, G. Mannino, A. L. Magna, T. Miyasaka, and A. Alberti, J. Phys. Chem. Lett., 2018, 9, 3000-3007. (DOI:10.1021/acs.jpclett.8b00120)

"Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition",
T.- Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, Materials Today Energy, 2018, 14, 100125.(DOI: doi.org/10.1016/j.mtener.2018.01.006.)

"Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells",
W. -D. Hu, C. Dall’Agnesel, X. -F. Wang, G. Chen, M. -Z. Li, J.-X. Song, Y.-J. Wei, and T. Miyasaka, J. Photechem. Photobiol. A., 2018, 357, 36-40. (DOI: doi.org/10.1016/j.jphotochem.2018.02.018)

"Vapor annealing controlled crystal growth and photovoltaic performance of bismuth triiodide embedded in mesostructured configurations",
A. Kulkarni, T. Singh, A. K. Jena, P. Pinpithak, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2018, 10, 9547-9554. (DOI: 10.1021/acsami.8b00430)

"Solid-state thin-film dye-sensitized solar cell co-sensitized with methylammonium lead bromide perovskite”,
P. Pinpithak, A. Kulkarni, H. -W. Chen, M. Ikegami, and T. Miyasaka, Bull. Chem. Soc. Japan, 2018, 91, 754-760. ( DOI:10.1246/bcsj.20170423 )

"Microstructural analysis and optical properties of the halide double perovskite Cs2BiAgBr6 single crystals",
O.A. Lozhkina, A.A. Murashkina, M.S. Elizarov, V.V. Shilovskikh, A.A. Zolotarev, Yu.V. Kapitonov, R. Kevorkyants, A.V. Emeline, T. Miyasaka, Chem. Phys. Lett., 2018. 694, 18-22.( DOI:doi.org/10.1016/j.cplett. 2018.01.031 )

"Amorphous metal oxide blocking layers for highly efficient low-Temperature brookite TiO2-based perovskite solar cells",
A. Kogo, Y. Sanehira, Y. Numata, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2018, 10, 2224-2229. ( DOI: 10.1021/acsami.7b16662 )

"Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers",
T. Singh, S. Oz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka, Adv. Funct. Mater, 2018, 28, 1706287-1706296. ( DOI: 10.1002/adfm.201706287 )

"Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity”,
T. Singh, and T. Miyasaka, Adv. Energy. Mat.,, 2018, 8, 1700677-1700685. (DOI: 10.1002/aenm.201700677)

"Solar water splitting utilizing a SiC photocathode, a BiVO4 photoanode, and a perovskite solar cell",
A. Iwase, A. Kudo, Y. Numata, M. Ikegami, T. Miyasaka, N. Ichikawa, M. Kato, H. Hashimoto, H. Inoue, O. Ishitani, and H. Tamiaki, ChemSusChem, 2017, 10, 4420-4423. (DOI: 10.1002/cssc.201701663)

”Photovoltaic properties of two-dimensional (CH3(CH2)3NH3)2PbI4 perovskite crystals oriented with TiO2 nanowire array",
Y. Sanehira, Y. Numata, M. Ikegami, and T. Miyasaka, Chem. Lett., 2017, 46, 1204-1206. (DOI: doi.org/10.1246/cl.170428)

"Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures"
A. K. Baranwal, H. Masutani, H. Sugita, H. Kanda, S. Kanaya, N. Shibayama, Y. Sanehira, M. Ikegami, Y. Numata, K. Yamada, T. Miyasaka, T. Umeyama, H. Imahori, and S. Ito, Nano Convergence, 2017. 4:26. (DOI 10.1186/s40580-017-0120-3)

"Severe morphological deformation of Spiro-OMeTAD in (CH3NH3)PbI3 solar cells at high temperature",
A. K. Jena, M. Ikegami, and T. Miyasaka, ACS Energy Lett., 2017, 2, 1760-1761. (DOI:10.1021/acsenergylett.7b00582)

"Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers",
R. Hamaguchi, M. Yoshizawa-Fujita, T. Miyasaka, H. Kunugita, K. Ema, and M. Rikukawa, Chem. Commun., 2017, 53, 4366-4369.(DOI:10.1039/C7CC00921F)

”All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer”,
N. Shibayama, H. Kanda, S. Yusa, S. Fukumoto, A. - K. Baranwal, H. Segawa, T. Miyasaka, and S. Ito, Nano Convergence, 2017, 4:18. (DOI:org/10.1186/s40580-017-0113-2)

”Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber”,
J. Song, L. Liu, X. -F. Wang, G. Chen, W. Tian, and T. Miyasaka, J. Mater. Chem. A, 2017, 5, 13439-13447. (DOI: 10.1039/c7ta03331a)

”Controlled crystal grain growth in mixed cation-halide perovskite by evaporated solvent vapor recycling method for high efficiency solar cells”,
Y. Numata, A. Kogo, Y. Udagawa, H. Kunugita, K. Ema, Y. Sanehira, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2017, 9, 18739-18747. (DOI: 10.1021/acsami.7b02924)

"First evidence of CH3NH3PbI3 optical constants improvement in a N2 environment in the range 40-80 °C",
G. Mannino, A. Alberti, I. Deretzis, E. Smecca, S. Sanzaro, Y. Numata, T. Miyasaka, and A. L. Magna, J. Chem. Phys. C., 2017, 121, 7703-7710. ( DOI: 10.1021/acs.jpcc.7b00764).

“Poly(4-Vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells”,
B. Chaudhary, A. Kulkarni, A. K. Jena, M. Ikegami, Y. Udagawa, H. Kunugita, K. Ema, and T. Miyasaka, ChemSusChem, 2017, 10, 2473-2479. (DOI: 10.1002/cssc.201700271).

”Solution-processed transparent nickel-mesh counter electrode with in-situ electrodeposited platinum nanoparticles for full-plastic bifacial dye-sensitized solar cells",
A. Khan, Y.-T. Huang, T. Miyasaka, M. Ikegami, S.-P. Feng, and W.-D. Li, ACS Appl. Mater. Interfaces, 2017, 9, 8083-8091.( DOI: 10.1021/acsami.6b14861 )

"Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion",
A. Kulkarni, T. Singh, M. Ikegami, and T. Miyasaka, RSC Adv., 2017, 7, 9456-9460. ( DOI: 10.1039/C6RA28190G )

"Tuning of perovskite solar cell performance via low-temperature brookite scaffolds surface modifications",
T. Singh, Y. Udagawa, M. Ikegami, H. Kunugita, K. Ema, and T. Miyasaka, APL Materials, 2017, 5, 016103. ( DOI: 10.1063/1.4973892 )

"An Ultrathin Sputtered TiO2 Compact Layer for Mesoporous Brookite-based Plastic CH3NH3PbI3-xClx Solar Cells",
A. Kogo, S. Iwasaki, M. Ikegami, and T. Miyasaka, Chem.Lett., 2017, 46, 530-532. ( DOI:10.1246/cl.161163 )

"Low-temperature and Ambient Air Processes of Amorphous SnOx-based Mixed Halide Perovskite Planar Solar Cell",
P. Pinpithak, H.-W. Chen, A. Kulkarni, Y. Sanehira, M. Ikegami, and T. Miyasaka, Chem. Lett., 2017, 46. ( DOI:10.1246/cl.161060 )

"Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method",
K. Motoki, Y. Miyazawa, D. Kobayashi, M. Ikegami, T. Miyasaka, T. Yamamoto, and K. Hirose, J. Appl. Phys., 2017, 121, 085501. ( DOI: 10.1063/1.4977238 )

”Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance”,
T.A. N. Peiris, A. K. Baranwal, H. Kanda, S. Fukumoto, S. Kanaya, T. Bessho, L. Cojocaru, T. Miyasaka, H. Segawa, and S. Ito, Coatings, 2017, 7, 36. ( DOI: 10.3390/coatings7030036 )

"The mechanism of toluene-assisted crystallization of organic-inorganic perovskites for highly efficient solar cells",
N. Sakai, S. Pathak, H. -W. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, and H. J. Snaith, J. Mater. Chem. A, 2016, 4, 4464-4471.(DOI:10.1039/C6TA01087C )

“Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells”,
T. Singh, J. Singh,and T. Miyasaka, ChemSusChem, 2016, 9, 2559-2566. (DOI:10.1002/cssc.201601004)

 

”Analysis of Sputtering Damage on I-V Curves for Perovskite Solar Cells and Simulation with Reversed Diode Model",
H. Kanda, A. Uzum, A. K. Baranwal, T. A. N. Peiris, T. Umeyama, H. Imahori, H. Segawa, T. Miyasaka, and S. Ito, J. Phys. Chem. C, 2016, 120, 28441-28447. ( DOI: 10.1021/acs.jpcc.6b09219 )

”Fullerene Multiadducts as Electron Collection Layers for Perovskite Solar Cells ”,
Q. -H. Zhang, W. -D. Hu, X. -F. Wang, G. Chen, J. -P. Zhang, L. -X. Xiao, and T. Miyasaka, Chem. Lett., 2016. ( DOI:10.1246/cl.160881 )

”Towards stable and commercially available perovskite solar cells”,
N. -G. Park, M. Gratzel, T. Miyasaka, K. Zhu, and K. Emery, Nature Energy, 2016. ( DOI: 10.1038/nenergy.2016.152 )

”Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers”,
H. -W. Chen, T. -Y. Huang, T. -H. Chang, Y. Sanehira, C. -W. Kung, C. -W. Chu, M. Ikegami, T. Miyasaka and K. -C. Ho, Scientific Reports, 2016. ( DOI:10.1038/srep34319)

”100°C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes”,
A. K. Baranwal, S. Kanaya, T. A. N. Peiris, G. Mizuta, T. Nishina, H. Kanda, T. Miyasaka, H. Segawa, S. Ito, ChemSusCem, 2016. 9, 2604-2608.( DOI: 10.1002/cssc.201601089 )

"Dopant-Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells",
M. Li, Y. Li, S. Sasaki, J. Song, C. Wang, H. Tamiaki, W. Tian, G. Chen, T. Miyasaka, X. -F. Wang, ChemSusCem, 2016. 9, 2862-2869.( DOI: 10.1002/cssc.201601069 )

”Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells”,
J. Song, E. Zheng, L. Liu, X.-F. Wang, G. Chen, W. Tian, and T. Miyasaka, ChemSusChem, 2016, 9, 1-9. ( DOI: 10.1002/cssc.201600860 )

"Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells",
A. Kulkarni, A. K. Jena, H.-W. Chen, Y. Sanehira, M. Ikegami, and T. Miyasaka, Solar Energy, 2016, 136, 379-384. ( DOI:10.1016/j.solener.2016.07.019 )

"Stability of solution-processed MAPbI3 and FAPbI3 layers",
E. Smecca, Y. Numata, I. Deretzis, G. Pellegrino, S. Boninelli, T. Miyasaka, A. L. Magna, and A. Alberti, Phys. Chem. Chem. Phys., 2016,18, 13413-13422. ( DOI: 10.1039/C6CP00721J )

"SnOx-Brookite TiO2 Bilayer Electron Collector for Hysteresis-less High Efficiency Plastic Perovskite Solar Cells Fabricated at Low Process Temperature",
A. Kogo, M. Ikegami, and T. Miyasaka, Chem. Commun., 2016, 52, 8119-8122.( DOI: 10.1039/C6CC02589G )

"Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications",
T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2016, 8(23), 14542-14547. ( DOI: 10.1021/acsami.6b02843 )

"Anatase and Brookite Electron Collectors from Binder-free Precursor Pastes for Low Temperature Solution-processed Perovskite Solar Cells",
A. Kogo, Y. Sanehira, M. Ikegami, and T. Miyasaka, Chem. Lett., 2016, 45, 143-145. (DOI: 10.1246/cl.151007)

"HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells",
J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian and T. Miyasaka, J. Mater. Chem. A, 2016. 4, 8435-8443. (DOI: 10.1039/C6TA01074A)

"The mechanism of toluene-assisted crystallization of organic?inorganic perovskites for highly efficient solar cells",
N. Sakai, S. Pathak, H. -W. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, and H. J. Snaith, J. Mater. Chem. A, 2016, 4, 4464-4471.( DOI: 10.1039/C6TA01087C )

"High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions",
T. Singh, T. Miyasaka,Chem. Commun.,2016, 52, 4784-4787.(DOI:10.1039/C5CC10608G)

"Solution-processed tBu4-ZnPc:C61 bulk heterojunction organic photovoltaic cells",
L. Bekale, S. Barazzouk, N. Sakai, T. Murakami,K. Miyoshi, T. Miyasaka, and S. Hotchandani, Japanese J. Appl. Phys. 2016, 55, 032301. (DOI: 10.7567/JJAP.55.032301)

“Steady state performance, photo-induced performance degradation and their relation to transient hysteresis in perovskite solar cells”,
A. K. Jena, A. Kulkarni, M. Ikegami, T. Miyasaka, Journal of Power Sources, 2016, 309, 1-10. ( DOI:10.1016/j.jowsour.2016.01.094DOI: )

“Impacts of Heterogeneous TiO2 and Al2O3 Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells”,
Y. Numata, Y. Sanehira, and T. Miyasaka, ACS Appl. Mater. Interfaces, 2016, 8 (7), 4608-4615. ( DOI:10.1021/acsami.5b11067 )

"Low-temperature-processed ZnO-SnO2nanocomposite for efficient planar perovskite solar cells",
J. Song, E. Zheng, X.-F. Wang, W. Tian, T. Miyasaka, Solar Energy Materials & Solar Cells, 2016, 144, 623-630. ( DOI:10.1016/j.solmat.2015.09.054 )

"Improving the Stability of a Liquid-type Perovskite Solar Cell by Capping Spiro-OMeTAD Layer onto CH3NH3PbI3/TiO2 Film",
C. -Y. Hong, T. -Y. Hsieh, T. -C. Wei, M. Ikegami, C. -H. Lee, and Y. -L. Tung, Chem. Lett., 2015, 44, 1446-1448.(DOI:10.1246/cl.150640)

"Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum",
A. Alberti, I. Deretzis, G. Pellegrino, C. Bongiorno, E. Smecca, G. Mannino, F. Giannazzo, G. G. Condorelli, N. Sakai, T. Miyasaka, C. Spinella, A. L. Magna, ChemPhysChem, 2015, 16, 3064-3071. ( DOI: 10.1002/cphc.201500374 )

”Brookite TiO2 as a low-temperature solution-processed mesoporous layer for hybrid perovskite solar cells”,
A. Kogo, Y. Sanehira, M. Ikegami, and T. Miyasaka, J. Mater. Chem. A., 2015, 3, 20952-20957. ( DOI: 10.1039/C5TA06177F )

"Excitonic feature in hybrid perovskite CH3NH3PbBr3 single crystals",
H. Kunugita, T. Hashimoto, Y. Kiyota, Y. Udagawa, Y. Takeoka, Y. Nakamura, J. Sano, T. Matsushita, T.Kondo, T. Miyasaka, and K. Ema, Chem. Lett., 2015,44, 852-854.

“PbI2-based Dipping-controlled Material Conversion for Compact Layer Free Perovskite Solar Cells”,
E. Zheng, X-F Wang, J. Song, L. Yan, W. Tian, and T. Miyasaka,
ACS Appl. Mater. Interfaces, 2015, 18156-18162. ( DOI: 10.1021/acsami.5b05787 )

“Determination of Chloride Content in Planar CH3NH3PbI3-xClx Solar Cells by Chemical Analysis”,
L. Cojocaru, S. Uchida, A. K. Jena, T. Miyasaka, J. Nakazaki, T. Kubo, and H. Segawa,
Chem. Lett., 2015, 44, 1089-1091. ( DOI: 10.1246/cl.150385 )

“Efficient perovskite solar cell fabricated using an aqueous lead nitrate precursor”,
T.-Yu Hsieh, T. C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka,
Chem. Commun., 2015, 51, 13294-13297. ( DOI: 10.1039/C5CC05298J )

“Nb2O5 Blocking layer for high open-circuit voltage perovskite solar cells”,
A. Kogo, Y. Numata, M. Ikegami, and T. Miyasaka,
Chem. Lett., 2015, 44, 829-830.

“Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices”(Highlight Review),
Tsutomu Miyasaka,
Chem. Lett., 2015, 44, 720-729. ( DOI:10.1246/cl.150175 )

“The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells”,
A. K. Jena, H.-W. Chen, A. Kogo, Y. Sanehira, M. Ikegami, and T. Miyasaka,
ACS Applied Materials Interfaces, 2015, 7, 9817-9823.

“A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber”,
H.-W. Chen, N. Sakai, A. K. Jena, Y. Sanehira, M. Ikegami, K.-C. Ho, and T. Miyasaka,
J. Phys. Chem. Lett., 2015, 6, 1773-1779.

“Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells”,
J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, and T. Miyasaka,
J. Mater. Chem. A, 2015, 3, 10837-10844.

“Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum”,
I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka and A. La Magna,
Appl. Phys. Lett., 2015, 106, 131904.

“Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer”,
J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian, and T. Miyasaka,
Chem. Lett., 2015, 44, 610-612.

“High efficiency and robust performance of organo lead perovskite solar cells with large grain absorbers prepared in ambient air conditions”,
K.-L. Wu, A. Kogo, N. Sakai, M. Ikegami, and T. Miyasaka,
Chem. Lett., 2015, 44,321-323.

“Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells”,
H.-W. Chen, N. Sakai, M. Ikegami, and T. Miyasaka,
J.Phys. Chem. Lett., 2015, 6, 164-169

“A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells”,
T. Y. Hsieh, T. C. Wei, P. Zhai, S. P. Feng, M. Ikegami, and T. Miyasaka,
J. Power Sources, 2015, 283, 351-357.

“Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss”,
A. Ishii, A. K. Jena, and T. Miyasaka,
APL Mat., 2014, 2, 091102.

“Efficiency enhancement in ZnO:AI-based dye-sensitized solar cells structured with sputtered TiO2 blocking layers”,
A. Alberti, G. Pellegrino, G. G. Condorelli, C. Bongiorno, S. Morita, A. La Magna, and T. Miyasaka,
J. Phys. Chem. C, 2014, 118, 6576-6585.

“A metallocene molecular complex as visible-light absorber for high-voltage organic-inorganic hybrid photovoltaic cells”,
A. Ishii and T. Miyasaka,
ChemPhysChem, 2014, 15, 1028-1032.

“Quantum conversion enhancement with TiOx compact layer for ITO plastic film-based low-temperature-processed dye-sensitized photoelectrode”,
S. Morita, M. Ikegami, T. -C. Wei, and T. Miyasaka,
ChemPhysChem, 2014, 15, 1-5.

“MgO-hybridized TiO2 interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells”,
N. Sakai, M. Ikegami, and T. Miyasaka,
Appl. Phys. Lett., 2014, 104, 063303.

“Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode”,
H.-Wei Chen, C. -W Kung, C. -M. Tseng, T. -C. Wei, N. Sakai, S. Morita, M. Ikegami, T Miyasaka, and K. -C. Ho, J. Mater.
Chem. A, 2013, 1, 13759-13768.

“Efficiency enhancement of ZnO-based dye-sensitized solar cells by low-temperature TiCl4 treatment and dye optimization”,
N. Sakai, T. Miyasaka, and T. N. Murakami,
J. Phys. Chem. C, 2013, 117, 10949-10956.

“Alternation of charge injection and recombination in dye-sensitized solar cells by the addition of nonconjugated bridge to organic dyes”,
X.-H. Zhang, J. Ogawa, K. Sunahara, Y. Cui, Y. Uemura, T. Miyasaka, A. Furube, N. Koumura, K. Hara, and S. Mori,
J. Phys. Chem. C, 2013, 117, 2024-2031.

“Tri-functional Nb2O5 nano-islands coated on an indium tin oxide layer for a highly efficient dye-sensitized plastic photoanode”,
S. Morita, T. -C. Wei, M. Ikegami, and T. Miyasaka,
J. Power Sources, 2013, 240, 753-758.

“Nickel oxide hybridized carbon film as an efficient mesoscopic cathode for dye-sensitized solar cells”,
T. Okumura, T. Sugiyo, T. Inoue, M. Ikegami, and T. Miyasaka,
J. Electrochem. Soc., 2013, 160, H155-H159.

“A high voltage organic-inorganic hybrid photovoltaic cell sensitized with metal-ligand interfacial complexes”,
A. Ishii and T. Miyasaka,
Chem. Commun., 2012, 48, 9900-9902.

“Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”,
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith,
Science, 2012, 338, 643-647.

“The photo charge of a bacterioRhodopsin electrochemical cells measured by a charge amplifier”,
S. Takamatsu, K. Hoshino, K. Matsumoto, T. Miyasaka, and I. Shimoyama,
IEICE Electronics Express, 2012, 8, 505-511.

“AE monitoring of damage accumulation in transparent conductive oxide film under the mechanical strain”,
S. Wakayama, N. Takagi, T. Sakai, T. Miyasaka, and M. Ikegami,
J. Solid Mechanics and Mater. Eng., 2012, 5, 774-779.

“Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media”,
A. Kojima, M. Ikegami, K. Teshima and T. Miyasaka,
Chem. Lett., 2012, 41, 397-399.

“Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells”,
K.-M. Lee, Y.-C. Hsu, M. Ikegami, T. Miyasaka, K.R. J. Thomas, J. T. Lin, and K.-C. Ho,
J. Power Sources, 2011, 196, 2416-2421.

“Toward printable sensitized mesoscopic solar cells: Light-harvesting management with thin TiO2 films”,
T. Miyasaka,
J. Phys. Chem. Lett., 2011, 2, 262-269.

“The photo charge of a bacterioRhodopsin electrochemical cells measured by a charge amplifier”,
S. Takamatsu, K. Hoshino, K. Matsumoto, T. Miyasaka, and I. Shimoyama,
IEICE Electronics Express, 2011, 7, 505-511.

“Polythiophene-based mesoporous counter electrodes for plastic dye-sensitized solar cells”,
T. Muto, M. Ikegami, and T. Miyasaka,
J. Electrochem. Soc., 2010, 157, B1195-B1200.

“Photosensitive protein patterning with electrophoretic deposition”,
S. Takamatsu, K. Hoshino, K. Matsumoto, T. Miyasaka, and I. Shimoyama,
IEICE Electronics Express, 2010, 7, 779-784.

“Improvement in durability of flexible plastic dye-sensitized solar cell modules”,
M. Ikegami, J. Suzuki, K.Teshima, M.Kawaraya, T. Miyasaka,
Solar Ener. Mater. Solar Cells, 2009, 93, 836-839.

“Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells”,
K.M. Lee, C.Y. Hsu, P.Y. Chen, M. Ikegami, T. Miyasaka, and K.C. Ho,
Phys. Chem. Chem. Phys., 2009, 18, 3375-3379.

“Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting Ruthenium sensitizer”,
K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, and K. C. Ho,
J. Mater. Chem., 2009, 19, 5009-5015.

“Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka,
J. Am. Chem. Soc., 2009, 131, 6050-6051.

“Effect of thin TiO2 buffer layer on the performance of plastic-based dye-sensitized solar cells using indoline dye”,
K. Miyoshi, M. Numao, M. Ikegami, and T. Miyasaka,
Electrochemistry, 2008, 76, 158-160.

“Chlorin-sensitized high-efficiency photovoltaic cells that mimic spectral response of photosynthesis”,
M. Ikegami, M. Ozeki, Y. Kijitori, and T. Miyasaka,
Electrochemistry, 2008, 76, 140-142.

“Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes”,
Y. Kijitori, M. Ikegami, and T. Miyasaka,
Chem. Lett., 2007, 36, 190-191.

“Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania”,
T. Miyasaka, M. Ikegami, and Y. Kijitori,
J. Electrochem. Soc., 2007, 154, A455-A461.

“Plastic dye-sensitized photovoltaic cells and modules based on low-temperature preparation of mesoscopic titania electrodes”,
T. Miyasaka, Y. Kijitori, and M. Ikegami,
Electrochemistry, 2007, 75, 2-12.

“Plastic and solid-state dye-sensitized solar cells incorporating single-wall carbon nanotubes”,
N. Ikeda and T. Miyasaka,
Chem. Lett., 2007, 36, 466-467.

“A Platinum/Titanium Bimetallic Layer Deposited on Polymer film as Efficient Counter Electrodes for Plastic Dye-sensitized Solar Cells”,
M. Ikegami, K. Teshima, K. Miyoshi, T. Miyasaka, T.C. Wei, C.C. Wan, Y.Y. Wang,
Appl. Phys. Lett., 2007, 90, 153122-153124.

“Conductive polymer-based mesoscopic counter-electrodes for plastic dye-sensitized solar cells”,
T. Muto, M. Ikegami, K. Kobayashi, and T. Miyasaka,
Chem. Lett., 2007, 36, 804.

“Anticancer effect of dye-sensitized TiO2 nanocrystals by polychromatic visible light irradiation”
Y. Tokuoka, M. Yamada, N. Kawashima, and T. Miyasaka,
Chem. Lett., 2006, 35, 496-497.

“Conductive polymer-carbon-imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells”,
N. Ikeda, K. Teshima and T. Miyasaka,
Chem. Commun., 2006, 1733-1735.

“LB Molecule Orientation by DC Electric Field between Line Electrodes”,
S. Uegusa, A. Endo, T. Miyasaka, and A. Konno,
Trans. Mat. Res. Soc. Japan, 2005, 30, 153-157.

“Electric field orientation control of the LB molecule which carries out optical-electronic functional increase”,
A. Endo, S. Uegusa, K. Nakamura, T. Kumamoto, and T. Miyasaka,
J. Advanced Sci., 2005, 17, 170-172.

“A solid-state dye-sensitized photovoltaic cell with a poly(N-vinylcarbazole) hole transporter mediated by an alkali iodide”,
N. Ikeda and T. Miyasaka,
Chem. Comm., 2005, 1886-1888.

“Response to Comment on the 'The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy'”,
T. Miyasaka and T. N. Murakami,
Appl. Phys. Lett., 2005, 86, 196101.

“A high-voltage dye-sensitized photocapacitor of three-electrode system”,
T. N. Murakami, N. Kawashima, and T. Miyasaka,
Chem. Commun., 2005, 3346-3348.

“Fabrication and efficiency enhancement of water-based dye-sensitized solar cells by interfacial activation of TiO2 mesopores”,
H. Saito, S. Uegusa, T. N. Murakami, N. Kawashima, and T. Miyasaka,
Electrochemistry, 2004, 72, 310-316.

“Photoelectrochemical evidence for the role of an ion pair of Asp-212 and Arg-82 in the proton pumping of bacteriorhodopsin”,
K. Koyama and T. Miyasaka,
Electrochemistry, 2004, 72, 2-4.

“Ideally ordered, high-density patterning of DNA on Au disk array fabricated using anodic porous alumina”,
F. Matsumoto, K. Nishio, T. Miyasaka,and H. Masuda,
J. J. Appl. Phys., 2004, 43, L640-L643.

“Low temperature preparation of TiO2 mesopores for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV Light irradiation”,
T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka,
J. Photochem. Photobiol. A, 2004, 164, 187-191.

“Low-temperature fabrication of dye-sensitized plastic film electrodes based on electrophoretic preparation of mesoporous TiO2 layers”,
T. Miyasaka and Y. Kijitori,
J. Electrochem. Soc., 2004, 151, A1767-A1773.

“The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy”
T. Miyasaka and T. N. Murakami,
Appl. Phys. Lett., 2004, 85, 3932-3934.

“J band formation of the MC independent film by electric control of molecular orientation of L film”,
T. Shimada, S. Uegusa, K. Nakamura, T. Kumamoto, and T. Miyasaka,
J. Adv. Sci., 2004, 16, 35-37.

“Water-based dye-sensitized solar cells:Interfacial activation of TiO2 mesopores in contact with aqueous electrolyte for efficiency development”,
T. N. Murakami, H. Saito, S. Uegusa, N. Kawashima, and T. Miyasaka,
Chem. Lett., 2003, 32, 1154-1155.

“A photoelectrochemical evidence for the role of glutamate at the extracellular proton-releasing residue sites in bacteriorhodopsin.”,
T. Miyasaka and K. Koyama,
Electrochemistry, 2003, 71,100.

“Generation of photo-induced steady current by purple membrane Langmuir-Blodgett films at electrode- electrolyte interface”,
T. Miyasaka, T. Atake, and T. Watanabe,
Chem. Lett., 2003, 32,144.

“UV-light assisted chemical vapor deposition of TiO2 for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes”,
T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka,
Chem. Lett., 2003, 32, 1076.

“Development of LB molecules orientation technology by electric field and ultrasonic vibration”,
S. Uegusa, M. Ikeda and T. Miyasaka,
Trans. Mater. Res. Soc. Jp, 2003, 28, 59-62.

“Efficient nonsintered type dye-sensitized photocells based on electrophoretically deposited TiO2 layers”,
T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura, and S. Uegusa,
Chem. Letters., 2002, 31, 1250.

“On the azide effect regenerating the proton channel of mutated bacteriorhodopsin”,
K. Koyama and T. Miyasaka,
Chem. Lett., 2000, 212-213.

“The proton uptake channel of bacteriorhodopsin as studied by a photoelectrochemical method”,
K. Koyama and T. Miyasaka,
Bioelectrochem., 2000, 53, 111-118.

“Generation of faradaic photocurrent at bacteriorhodopsin films electrodeposited on a platinum electrode”,
T. Miyasaka and K. Koyama,
Electrochemistry, 2000, 68, 50-53.

“Mechanism of photocurrent generation from bacteriorhodopsin on gold electrodes”,
Y. Saga, T. Watanabe, K. Koyama, and T. Miyasaka,
J. Phys. Chem. B., 1999, 103, 234-238.

“Lifetime of M intermediate in the D96N mutant of bacteriorhodopsin determined by a photoelectrochemical method”,
K. Koyama, T. Miyasaka, R. Needleman and J. K. Lanyi,
Chem. Lett., 1999, 769-770.

“Buffer effect on the photoelectrochemical response of bacteriorhodopsin”,
Y. Saga, T. Watanabe, K. Koyama, and T. Miyasaka,
Anal. Sciences, 1999, 15, 365-369.

“Photoelectrochemical verification of the proton-releasing groups in bacteriorhodopsin”,
K. Koyama, T. Miyasaka, R. Needleman and J. K. Lanyi,
Photochem. Photobiol., 1998, 68, 400-406.

“pH dependent photocurrent response from bacteriorhodopsin at electrode-electrolyte interfaces”,
Y. Saga, T. Watanabe, K. Koyama, and T. Miyasaka,
Chem. Lett., 1998, 961-962.

“Tin-based amorphous oxide. A high-capacity lithium storage material”,
Y. Idota, T. Kubota, A. Matsufuji, Y.Maekawa, and T. Miyasaka,
Science, 1997, 276, 1395-1397.

“リチウムイオン二次電池におけるスズ複合酸化物負極”,
井戸田義雄, 峰尾 泰, 松藤明博, 宮坂 力,
電気化学および工業物理化学(現Electrochemistry),1997, 65, 717-722.

“Design of intelligent optical sensors with organized bacteriorhodopsin films”,
T. Miyasaka,
Jpn. J. Appl. Phys., 1995, 34, 3920-3924.

“Molecular organizations of bacteriorhodopsin thin films in optoelectronic devices”,
K. Koyama, N. Yamaguchi, and T. Miyasaka,
Adv. Mater., 1995, 7, 590-594.

“Modification of electrode surfaces and its applications. Intelligent electrodes modified with photosensitive proteins and their device applications”,
T. Miyasaka and K. Koyama,
J. Surf. Finishing Soc. Japan, 1995, 46, 317-323.

“Antibody-mediated bacteriorhodopsin orientation for molecular device architectures”,
K. Koyama, N. Yamaguchi, and T. Miyasaka,
Science, 265, 1994, 762-765.

“Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor”,
T. Miyasaka and K. Koyama,
Applied Optics, 1993, 32, 6371-6379.

“Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface”,
T. Miyasaka and K. Koyama,
Thin Solid Films, 1992, 210/211, 146-149.

“Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor”,
T. Miyasaka, K. Koyama, and I. Itoh,
Science, 1992, 255, 342-344.

“Oriented polypeptide monolayer by rapid spontaneous condensation of amphiphilic amino acid esters”,
T. Miyasaka, N. Nishikawa, and M. Ono,
Thin Solid Films, 1992, 210/211, 393-396.

“Rapid self-polycondensation of amphiphilic amino acid esters in ordered monolayer assemblies. An morphological evidence for lateral growth of polypeptide at the air-water interface”,
T. Miyasaka, N. Nishikawa, K. Hashimoto, and M. Ono,
Chem. Lett., 1991, 619-622.

“Chiral polypeptide monolayers from self-condensation of amphiphilic amino acid ester. Effect of chirality on the membrane structure”,
T. Miyasaka, N. Nishikawa, A. Orikasa, and M. Ono,
Chem. Lett., 1991, 969-972.

“バクテリオロドプシンを用いた光電応答系の確立―紫膜LB膜の固液界面における光電流応答”,
宮坂 力,山口直人,並河均,小山行一,
生物物理学会誌, 1991, 31, S134.

“Photoelectrochemical behavior of purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface”,
T. Miyasaka and K. Koyama,
Chem. Lett., 1991, 1645-1648.

“Amperometric glucose sensor with glucose oxidase immobilized on SnO2 electrode via a monolayer of a photoreactive nitrophenylazide derivative”,
T. Miyasaka, K. Koyama, and T. Watanabe,
Chem. Lett., 1990, 627-630.

“A novel photoreactive amphiphile of nitrophenylazide for immobilization of bioactive proteins”,
T. Miyasaka, Y.Maekawa, and K. Koyama,
Thin Solid Films, 1989, 180, 73-83.

“Photoelectrochemical observations on chlorophyll-carotene interactions in a lipid bilayer film”,
T. Miyasaka and K. Honda,
Thin Solid Films, 1983, 102, 173-185.

“Photoelectrochemical study of chlorophyll-a multilayers on SnO2 electrode”,
T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda,
Photochem. Photobiol., 1980, 32, 217-222.

“Photoelectrochemical studies on the monolayer assemblies of chlorophyll a; On the quantum efficiency of photocurrent generation”,
T. Miyasaka and K. Honda,
Surface Science, 1980, 101, 541-550.

“Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrode”,
T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda,
Nature(London), 1979, 277, 638-640.

“Light energy conversion with chlorophyll monolayer electrode. In vitro electrochemical simulation of photosynthetic primary processes”,
T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda,
J. Am. Chem. Soc., 1978, 100,6657-6665.

“Photoelectrochemical study on chlorophyll monolayer electrodes”,
T. Miyasaka, T. Watanabe, A. Fujishima, and K. Honda,
Chem. Lett., 1978, 443-448.